Yearly Electricity Consumption Forecasting using a Nonhomogeneous Exponential Model Optimized by PSO Algorithm
نویسندگان
چکیده
Yearly electricity consumption trends of most developing countries usually exhibit approximately exponential growth curves. An optimized nonhomogeneous exponential model (ONEM) is proposed as a method of forecasting electricity consumption by using trend extrapolation. The parameters of the nonhomogeneous exponential equation are obtained by using the inverse accumulated generating operation, discretizing the differential equation, minimizing the residual sum of squares (RSS), and accumulating the homogeneous exponential equation. Furthermore, to improve forecasting precision, particle swarm optimization (PSO) algorithm is used to optimize the equation parameters. To evaluate the forecasting performance for comparison, the said model and two other traditional methods are used to forecast the yearly electricity consumption of India. Empirical results show that this model is much better than traditional methods for each error analysis indicator.
منابع مشابه
Iran's Electrical Energy Demand Forecasting Using Meta-Heuristic Algorithms
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
متن کاملHybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand
In the present study Artificial Neural Network (ANN) has been optimized using a hybrid algorithm of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The hybrid GA-PSO algorithm has been used to improve the estimation of electricity demand of the state of Tamil Nadu in India. The ANN-GA-PSO model uses gross domestic product (GSDP); electricity consumption per capita; income growth r...
متن کاملForecasting Natural Gas Consumption Using Pso Optimized Least Squares Support Vector Machines
This paper proposes an effective model based on the least squares support vector machines (LSSVM) and the particle swarm optimization (PSO), termed PSO-LSSVM, for prediction of natural gas consumption, as an important energy resource. The salient feature of mapping nonlinear data into high dimension feature space, distinguishes LS-SVM as a powerful approach for forecasting and estimation. Optim...
متن کاملUsing GM (1,1) Optimized by MFO with Rolling Mechanism to Forecast the Electricity Consumption of Inner Mongolia
Abstract: Accurate and reliable forecasting on annual electricity consumption will be valuable for social projectors and power grid operators. With the acceleration of electricity market reformation and the development of smart grid and the energy Internet, the modern electric power system is becoming increasingly complex in terms of structure and function. Therefore, electricity consumption fo...
متن کاملEstimation of Electricity Demand in Residential Sector Using Genetic Algorithm Approach
This paper aimed at estimation of the per capita consumption of electricity in residential sector based on economic indicators in Iran. The Genetic Algorithm Electricity Demand Model (GAEDM) was developed based on the past data using the genetic algorithm approach (GAA). The economic indicators used during the model development include: gross domestic product (GDP) in terms of per capita and ...
متن کامل